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procedure is derived directly from the Lanczos process. In this derivation it is dem-
onstrated that the conjugate gradient implicitly computes the triangular factors of
the reduced tridiagonal system generated by the Lanczos process. The stability of
the conjugate gradient procedure depends on that for the triangular factorization
that can be guaranteed only for positive definite systems.

Loss of orthogonality among the Lanczos vectors is also addressed and the
method of partial reorthogonalization is used to maintain orthogonality. This
approach improves the robustness of the algorithm but can be expensive for ill-
conditioned systems. For such problems, preconditioning can help reduce the
number of iterations required for convergence. Three different preconditioning
schemes are considered; diagonal, element-by-element (E x E), and substructure-
by-substructure (S x S).

The above methods were applied to a number of different example problems.
The S x S method is more effective than either the diagonal or the E x E methods at
reducing both the computation cost and the number of iterations. For ill-condi-
tioned systems the computation cost for E x E was less than that for diagonal
preconditioners but as the condition number improved, the cost for the two methods
were about the same.
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1. Introduction

In this study we consider the solution of symmetric linear systems of equations arising from appli-

cations of the finite element method using Krylov based algorithms (e.g. Lanczos and conjugate gradient
procedures). The Lanczos algorithm [ I ] was first introduced in 1950 as a method for computing eigenvalues
and the corresponding eigenvectors of a matrix. In 1952 Hestenes and Stiefel [2] introduced the method of
conjugate gradients (CG) for solving linear systems of equations. In the same year, Lanczos showed that
his algorithm then called the method of minimized iteration [3], can also be used to obtain the solution of
a linear system of equations. In fact, these methods are closely related in the sense that in exact arithmetic
(when no roundoff errors are present) they compute the same approximate solution at each step. A fact
known to both Lanczos and Hestenes.

An important motivating factor for using Lanczos and CG methods is the theoretical result showing
that in exact arithmetic both methods are able to compute the solution in less than n iterations, where n is
the number of equations in the system. In fact the number of iterations will be less than the total number of
distinct eigenvalues in the system. In 1960, the CG method was first used to solve system of linear equations
arising in structural mechanics [4]. In this paper, Lively showed that CG was not effective for solving the ill-
conditioned systems that often arise in structural analysis. The popularity of the CG method vanished when
it was found that for certain problems it required well over n steps to converge to the correct solution. CG
was then abandoned and the more effective direct methods based on triangular factorization of the matrix
were adopted by structural analysts as their method of choice.

Nonlinear transient finite element problems may be characterized by the equations of dynamic equilib-
rium

M + f'' t (w) = f CZ(t) (1)

where M is the mass matrix, f "' is the vector of internal resisting forces due to the displacements w, and

f e'x is the time dependent external force vector [5]. The above system is generally solved by applying a

step-by-step time integration procedure resulting in a system of nonlinear algebraic equations. The solution

to this system is obtained using a Newton-Raphson iteration or related schemes. At the heart of this iteration

is a set of linear equations

Ax = b (2)

where x is the correction to the approximate solution vector in the nonlinear iteration loop. A is sym-

metric, positive definite and sparse and is related to the system in (1) through

A=M+K, (3)

where K = and 8 is a scaler parameter that depends on the time step (e.g. 6 = At2). For
problems with small bandwidth or problems which result in small fill-in in the triangular factorization of cs
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A, direct methods are the fastest solvers [6]. When the bandwidth of A is large (e.g. large complex two
and three dimensional problems), the solution of the linear system may be a formidable task and alternative

procedures must be considered.

In 1971 the advantages of Lanczos and CG methods were recognized when attention was focused on

linear systems with large sparse matrix coefficients, see [7]. An important property of these methods is that,

at each step, the solution to (2) can be obtained with out an explicit knowledge of the matrix. Only a means of
computing the matrix vector product Av for a given vector v is required. This is an elegant way of exploiting

the sparsity structure of A. Typically, in finite element analysis there are fewer than 100 nonzero terms in

each row of A. The number of nonzero terms in A is independent of the number of equations. It depends on

the number of nodes per element, the number of parameters per node, and the number of elements attached
to a node. The number of equations in this system depends on the complexity of the structure (i.e. the

domain) and also on the amount of detail desired in describing the solution.
Preconditioning is introduced to alleviated the difficulties associated with the slow convergence of

Lanczos and CG methods. Instead of solving (2) one solves

AB-'y = b (4)

where x = B- Iy. B is referred to as the preconditioning matrix. The advantages of preconditioning can

also be realized by solving B-' Ax = B-' b. The number of iterations required to solve (4) depends on

the condition number, ic, of its coefficient matrix. (AB-') is the ratio of the largest eigenvalue of the
eigenproblem [A - .B]z = 0 to its the smallest (i.e x = (JAB- '([ [IBA- ((). Theoretical considerations

suggest that at the end of each of the first few iterations of both Lanczos and CG methods the residual norm

is reduced by a factor of . Note that when K is unity a single iteration is sufficient to solve theV/ c(AB- -) ,+i

equation. Of course K is one only when B = A! However, this provides us with a guideline for choosing B.
B must be chosen such that one can easily compute the solution of a linear system of equations with B as

its matrix coefficient while at the same time it is as close to A as possible. For non-trivial matrices A, these

are contradictory requirements which makes the problem of finding good preconditioners a challenging one.

For a well chosen B only a few iterations is required to reduce the residual norm to the desired level. It is

important to note that the condition number of AB- 1 depends on the time step through 8 in equation (3) as

the following example demonstrates.

Example 1:

1 01. Ten
LtK= 11 l+ljadM [ •0

A= [I+(I+ )S -8 1
- I + (I + )

... .• • i • I I I I2



The eigenvalues of the preconditioned system satisfies the quadratic equation det[A - XB] = 0. There is no

change in the condition number for this problem with diagonal preconditioning since the diagonal of A is a

scalar multiple of the identity matrix. Then the condition number for this problem becomes

1 C (2 + C)SK=

1 + 8

For a sufficiently small time step the condition number is close to unity. On the other hand as the time step

increases the condition number approaches 1 + t which may be arbitrarily large for small C.

This example demonstrates that; (a) the performance of iterative methods for solving linear systems

of equations arising from transient finite element problems depends strongly on the time step, and (b) for

a given finite element discreatization static problems result in worse conditioned system of equations than

transient problems. These facts should be considered when assessing the performance of iterative methods.

Here, we focus on systems which arise from the application of the finite element method to engineering

problems whose sparsity structure may be characterized by

A = E NeaeNT (5)
e

where N, is long and thin Boolean connectivity matrix and a, denotes the small stiffness matrix for element

e. We can take advantage of this structure of A when using either CG or Lanczos methods to solve (2). In

[8] and [9), it is pointed out that the matrix vector product

Au = -(NeaNT u) (6)

can be computed without ever assembling A. The evaluation of Au using (6) requires more arithmetic

operations than that using an assembled A (assuming some compact structure where no zero entries of A
are stored). Typically, the number of arithmetic operations would increase by about three folds. However,

the use of parallel and vector computers produces only a modest increase in the elapsed time and in certain

cases might even reduce it.

In 1983, Hughes, Levit and Winget [101 proposed a time integration algorithm for the solution of heat

conduction equations that uses an element-by-element (E x E) splitting. In the same year, Ortiz, Pinsky and

Taylor [II] proposed a novel extension of the ExE procedure to the solution of dynamic equations. These

ExE time integration algorithms are unconditionally stable, but they lack accuracy which limits their use.

Hughes, Levit and Winget [ 12] reformulate the Ex E procedure as an iterative solver to achieve the accuracy

and stability of standard finite element algorithms. In [13] Nour-Omid and Parlett addressed the problem

of preconditioning (2). The idea is to employ the methods for solving differential equations presented in

[ 10,11,121 as preconditioners. The resulting preconditioners use the element representation of A in (6), and

requires no globally.assembled matrix. They are defined as the product of positive definite element matrices

obtained by applying a diagonal shift to the positive semi-definite element stiffness matrices. Winget and
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Hughes [14] further developed the ideas of element preconditioners and constructed a variation that replaces
the terms on the diagonals of the element matrices with the corresponding ones in the assembled matrix. This
modification also results in positive definite element matrices. A product algorithm similar to that in [ 11 is
then constructed using the Choleski factorization of these modified element matrices. It is worth noting that
these preconditioners, though computed element-by-element, are an approximate Choleski factorization of
A, see [ 15]. Our primary interest in element-by-element preconditioning is in keeping storage requirements
down in the analysis of regular structures, but the advent of vector and parallel computing may make this
approach a fast one as well, especially in three dimensions.

In section 2 we briefly describe the Lanczos algorithm and present a derivation of the conjugate gra-

dient method from the Lanczos algorithm in section 3. We then turn to the problem of orthogonality loss
that affects both methods. As a remedy, we consider the approach of partial reorthogonalization proposed

by Simon [16]. The element preconditioners used in this study are described in section 5 together with a
discussion of some implementation issues. In section 6 we describe the S x S preconditioners and its relation
to Ex E method. The results of numerical tests on two characteristically different problems are presented in

section 7.

4



2. Lanczos Algorithm

When used as a method for solving linear systems, the Lanczos process starts from a given initial

approximation to the solution, xo. Associated with x0, define the residual vector ro = b - Axo. Unless a

good estimate to the desired solution is available, the best choice for xo is the zero vector. Then ro = b.
Normalizing r0 gives the first Lanczos vector, qj. Implicitly, at the end of the first step the algorithm obtains
a Galerkin approximation to the solution of (2) from the one dimensional space wirn q, as the base vector.
Associated with this approximation is a new residual vector. The normalization of this residual results

in the second Lanczos vector, q2 . Repeating the Galerkin process but using the two dimensional space,

span(q, q2), followed by the normalization of the residual one obtains q3 .

At a typical step, j, the Lanczos algorithm computes a residual vector associated with a best approxi-

mation, xj, (in a Galerkin sense) to x from the j dimensional space, span[q, q2,..., I- This space is often

referred to as the space of trial vectors. The next Lanczos vector, q, + p is the normalized residual b - Axj.

This process is repeated until the norm of the current residual is small compared to the that of the starting

residual. The Galerkin method chooses the approximate solution xj by forcing the associated residual to

be orthogonal to the space of trial (Lanczos) vectors. The Lanczos method computes neither x, nor the
associated residual. Instead it computes, at step j, a j-vector sj that contains the weighting parameters for
constructing the Galerkin solution.

Alternatively, Lanczos may be described as the Gram-Schmit orthogonalization process applied to the

Krylov space, [r0 , AB- 'ro, (AB- 1 )2r0 ' ..., (AB- 1 )j- 1ro], associated with equation (4). The orthogonal-

ization is performed with respect to the B- inner product. The result of this orthogonalization is the set

of Lanczos vectors [q, , ... , q ]. q +1 is obtained by orthonormalizing (AB- )' ro against the computed

Lanczos vectors. The same vector q+, is obtained if AB- 'q is used instead of (AB -' Yro. It turns out

that the components of AB- 1% along the first j - 2 Lanczos vectors are zero and orthogonalization needs
to be performed only against q and q_ .- The result is a vector ri in the same direction as the residual due

to the Galerkin approximation described above.
The algorithm can then be rewritten as the three term relation

r, = 03 +Iqj+I = AB-1 qj - q 1 - qj-1Aj (7)

where a, = qT B-AB- q and r, is normalized with respect to the inverse of the preconditioner to obtain

% + with normalizing factor , + I = (rT B- 'rj ) '.
The j-th step of the Lanczos algorithm involves the calculation of a1 , Pi + I,. and % + ,, in that order.

In addition to the storage needs for A and B, the algorithm requires storage for 5 vectors of length n; one

for each of the vectors, q, -1, %, r., p, = B- Iq and p,.- 1. The total cost for one step of the algorithm
involves one solve with the preconditioner B as the coefficient matrix, a multiplication of A by a vector, two
inner products and four products of a scalar by a vector. A summary of the Lanczos algorithm is presented

in Table 1.

5



After m Lanczos steps all the quantities obtained from equation (7) can be arranged in a global matrix

form [ Ir 1 F IEml = F I (8
=m Irm em (8)

SAB [Q-]J I.Q-] r01

Here e. - (0,0, ... 0, 1), Qm is an n x m matrix with columns q, i = 1,2, ... ,m, and T, is the

tridiagonal matrix
02 a2 0-

TM =(9)

The orthogonality property of the Lanczos vectors, QT B1Q = Im, where Im is the m x m identity

matrix, can be used in equation (8) to obtain

QTB-'AB-'Qmn = Tm (10)

A Galerkin approximation to y in (4) can be constructed by taking a linear combination of the Lanczos

vectors. Accordingly,

Ym =Qms (11)

where sm, satisfies the tridiagonal system of equations

Tms=QTB- Ir0 = 1 ej (12)

The last equality is obtained using the fact that the starting vector is r0 = 01 ql. el is the first column of the

identity matrix. Equation (12) is a weak form of (4) and is obtained by first substituting the approximation

to y from (11) into equation (4) to obtain the residual

gm = AB-'Qmsm - b (13)

Orthogonalizing gm against Qm with respect to the B- 1 inner product results in equation (12). gm is

simply related to r,,, through

= rm Gm (14)

wheream is the bottom element of sm. Thenorm of this residual, pm II=jm1 = Pm+ Iomcanbe used to
monitor the convergence. Once pm is sufficiently small the Lanczos algorithm is terminated and the solution

is constructed using (11). The Lanczos vectors can be put on secondary storage as they are being generated.

There are two main reasons for keeping the Lanczos vectors.

6



(a) They arm used occasionally in subsequent steps to restore orthogonality (see the following section on

Loss of Orthogonality for mom details).

(b) They can be recalled and used to construct the solution to anew right hand side [17]. The algorithm in

Table 1 is particularly well suited for multiple right hand sides.

Given an approximate solution vector xo:

(I) Set

(a) re = b - Ae,

(b) qO = 0,

(c) Solve Bp, = ro.

(d) [5 = (pTro)2,

(e) ql = $-ro

(f) P

(2) for j = 1,2,.. repeat;

(a) ri = Ap,

(c) a, =jB-t = pTt,

(d) r, = tj - q.(x,

(e) Solve Bp, = r

(f) Pj, = (rT BIrj)'2 = (pT rj 21

(g) if residual norm is small then terminate the loop.

(h) qj+j = 5 +ri

(i) Pj+I = W+

(3) Solution x = xo + B -Qm s

Table 1. The Lanczos algorithm.
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3. Conjugate Gradient Algorithm

In this section we give a derivation of the conjugate gradient algorithm directly from the Lanczos

process [18,19,20]. The conjugate gradient method can be viewed as a procedure that implicitly computes

the triangular factorization of Tm through an update algorithm to combine the steps 2 and 3 of the Lanczos

algorithm given in table 1. Accordingly

Tm = L D,nL (15)

where Dn = diag[8i, 82,..., ,] and

-0 )2 1
Lm 1 (16)

The components of T,,, L,,, and D,, are related through the following pair of equations.

Sk= O - (a)-.1 8 k-1

Ok-, 1(17)

These two equations completely define the algorithm for triangular factorization of Tm. Next we define

Z'. = B-1QM L;T (18)

An important property of Z, is that its columns are orthogonal with respect to A. To show this consider

ZMAZm = L- 1 QmB-AB-IQmL; T

=L;ITML;T

The columns of Zm are said to be conjugate and the orthogonality condition of Z,, with respect to A is

referred to as the conjugacy condition.

Multiplying both sides of equation (18) by L T and using the bi-diagonal structure of L, to equate the

k-th column on either side of this equation, yields

Zk - Zk-10-l = B-1qk (19)

Defining dk = B-1 q the above equation reduces to

Zk = dk + zk. 1(k- 1 (20)

8



Due to the conjugacy property of Zm we are able to update the solution vector xh by simply adding a

component of zk. Thus, using equation (4) we have

xk = B-'yk

= B-lQkT '1Ole,

= B-1QhLk TDl'Lk l'le,

= ZkDk ;Lk'Ole,

= xk-1 +TkZk

where yk is the k-th element of D t L;' 1 el. This way the residual vector can also be updated using the

update relation

g1 - g= -.1  -YAuk (21)

and uk = Azk. y, is related to the component of Dm and Lm through

Yk = 5 (22)

where p, is updated through

Pk = (Ok- lPk-1 (23)

with p, = [. The above equation is simply the forward reduction algorithm to compute L-' 1 el.

Thus the CG method directly computes the triangular factors of Tm by updating the factors of Tm .

The result is the algorithm in Table 2. It is important to note that Tm is often indefinite when A is a sym-

metric indefinite matrix. In this case the conjugate gradient algorithm is not reliable since the triangular

factorization of T, may be numerically unstable. This instability occurs when ever 8k is small. Note that

8, =z T uk is the denominator of the right hand side of (2b) in Table 2.

The CG algorithm generates a sequence of approximations, xh, to the solution x with a corresponding

residual vector g.. The termination criterion can be chosen based on these quantities. In addition to storage

demands for A and B the algorithm requires storage for 4 vectors.

9



Given an approximate solution xo then:

(1) Set

(a) go = b - Axo

(b) z1 = go

(c) Solve Bd1 = go

(d) p, = g~d

(2) for k = 1, 2,... repeat;

(a) uk = AzL

(b) Y, =

(c) Xk = Xk-I + YLZk

(d) 9k = 9k- I - Y/kuk

(e) Solve Bdk+I = gk-

() Pk+, =gtdk+

(g) if pk + 1_< tol 0o then terminate the loop.
(h) pOk = +1

it-

(i) Zk+1 = dk+l + O)kZk

Table 2. The Conjugate Gradient Algorithm

10



4. Loss of Orthogonality

In finite precision, each computation introduces a small error and therefore the computed quantities

will differ from their exact counterparts. Our objective here is to state the effect of roundoff error on the
Lanczos process. For this purpose we denote by e the smallest number in the computer such that 1 + E> 1.

It is known as the unit roundoff error.
Although the tridiagonal relation, Eq. (8), is preserved to within roundoff, the B- 1 orthogonality prop-

erty of the Lanczos vectors completely breaks down after a certain number of steps depending on e and
the distribution of the eigenvalues of B- 1 A [ 16,19]. The Lanczos vectors not only lose their orthogonality,

but may even become linearly dependent. This problem also effects the conjugate gradient method in the

form of loss of conjugacy. A direct consequence of this loss of orthogonality is delay in convergence to the

desired solution.
The loss of orthogonality can be viewed as the subsequent amplification of the errors introduced after

each computation. We let Q. denote the computed Lanczos vectors and define the following matrix

H. = QT B- 1 Q, (24)

In exact arithmetic Hm is the identity matrix. The off-diagonals of Hm will depend on e, the unit

roundoff error. Simon [ 16] found a recurrence relation that can be used to estimate the elements of a column

of Hm from the elements of Tm and the elements in the previous columns of Hm. This recursion can be

stated in vector form

P+lhj+l z Tj.lh, - ajhj - Pjhj-1 (25)

where h. _ h, and hj + I are vectors of length j - 1 containing the top j - 1 elements of the j - 1, j,

and j + 1-th columns of (Hm - In ). Here, the bottom element of h_ - is E. The orthogonality state can be

monitored by updating hi +1 in the course of the Lanczos algorithm.

A number of preventive measures can be taken to maintain a certain level of orthogonality. Lanczos
was aware of the effects of roundoff on the algorithm when he presented his work. He proposed that the

newly computed vector, q,+ 1, be explicitly orthogonalized against all the preceding vectors at the end of

each step. We will refer to this technique as "full reorthogonalization" method. It enforces orthogonality to
within roundoff (i.e. [qT B-'qj I < ne, i # j). In [16] Simon showed that the computed tridiagonal remains
accurate to within roundoff if the more relaxed orthogonality condition

JqT B- I < V/'-, i $ j (26)

is enforced. We refer to this as the semi-orthogonality condition, and to procedures that adopt the weaker

condition as selective orthogonalization methods. Simon proposed to update hj + I using (26) and monitor
the magnitude of its elements. Whenever any component of h, + I is greater than v1E/ then semi-orthogonality

11



may be lost between q + , and some columns of Q,. At this step the appropriate Lanczos vectors are brought

in from secondary store and q + is orthogonalized against each of them. This operations must be carried

out in two successive steps to avoid propagation of the errors.

A variant of Simon's scheme is to restore orthogonality of % and q +, at the same time. In this way

no reorthogonalization of q + 2 will be necessary, at the end of the next step. The number of operations for

this scheme is the same as that of the scheme above, but vectors are retrieved only once and therefore the

I/O overhead is halved.

The disadvantage of reorthogonalization is that additional storage is required to keep the Lanczos vec-

tor. If m steps are required to reduce the residual to the desired level then storage for m vectors of length

n is needed. The advantage is that reorthogonalization can significantly reduce the number of steps. This is

demonstrated by the numerical examples.
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5. Element by Element Preconditioning

The idea of using solution algorithms from discretized partial differential equations for constructing

preconditioners is not new. As early as 1963 Wachspress proposed one such preconditioner based on the

ADI method [21]. Recently, in [13] we proposed a number of preconditioners, based on the element-by-

element representation of A for solving Mx + Ax = b. Here M is a diagonal matrix. The steady state

solution of this equation is the same as that of (2).

The first preconditioner uses a Choleski factorization of the element matrices shifted by a diagonal

matrix. We denote the diagonally scaled A by

ft.

,M- AM-" E N Ni, NT, (27)

where, n, is the total number of elements. Then the proposed preconditioner can be constructed in the

following manner. First, the Choleski factors CC, = a! + 4e is computed. The shift was applied to

eliminate the singularity of Ae. A lower triangular matrix, C is formed as the product of the C. 's. C is an

approximation to the Choleski factorization of A. The resulting preconditioner is given by

n. 1

B-' =M-1Ne,'N T fj NCTN M' (28)
e=1 e=n.

Note that the second product is carried out in the reverse order of the first. Numerical results indicated that

a shift a = 1 results in a preconditioner that is close to the optimum.

Writing 'e = fie + i + d., where de and ra, denote the diagonal and strict upper triangular part of A,,
a second preconditioner was constructed as

n. 1

B-' = M 1 1 ' N . (I+e + T N) - [N T  1 N,(I+d, +Ue)-NTM2 (29)

e-I e~n.

A comparison of these two preconditioners on small problems indicated that the Choleski form is more

effective.

ExE Choleski:

In [14] Winget replaced the diagonal of ie with the identity matrix to form

ft. I

B-1 = Mf H Nee'N H Ne TN M (30)
e=I e~n.

where ece = I + tie + ftl • This avoids the artificial shifting of I.

13



Ex E LU Split:

Similarly, by dropping d. in (29), a new but simpler preconditioner

B=M NS.(+ u)N+ H N,(I+fie)NT.M (31)
C=1 efn.

can be constructed that eliminates the need for forming Choleski factorization of element matrices. The main

advantage is the reduction in storage since B-'v can be evaluated for any v using the element representation

of A. In the next section we compare the two preconditioners defined in (30) and (31) using both Lanczos

and CG methods.

Implementation

We view the computation of the matrix-vector product Au via equation (6) as a mechanism for saving

storage in return for extra arithmetic work. The reduction in storage demand is due to the following:

I. In most practical finite element problems there is a considerable amount of repetition of a given element

in the mesh structure.
2. The element matrices of a number of element types, such as beams, trusses, etc., are known explicitly

and depend on only a few fundamental parameters.
The first observation allows us to create a data structure which keeps the element matrix of one element

to represent a whole group of elements. The second observation results in a canonical form for each element

type, and therefore only a few parameters need be stored to define each element matrix. Hence the storage

requirements for all the distinct a, is often significantly less than the number of words required to hold A,
even when a sophisticated sparse storage scheme is used (see [61). Furthermore, one can always recompute
the element matrices a, each time the product Au is required.

The overhead for the reduction in storage is the increased number of operations. However, two com-

ments are in order:

1. The cost of a multiply no longer dominates arithmetic evaluations.

2. Vector and Parallel computers or other special purpose devices can execute Fe (N. a, NT u) very effi-

ciently.
When using the implicit form of Au it can be seen that different elements operate on different parts of

the vector v. One can take advantage of this fact by performing some of the element matrix operations in

parallel. The elements are simply arranged into p groups, where p is the number of available processors.
Each processor then computes the contribution of the product of all the element matrices in its assigned group

by the corresponding components of v. Finally, the contribution from each group is combined to obtain Au.
The implicit product increases the cost of matrix operations by a factor of, say gt, where g depends on the

average number of elements connected to a node. Typically gx range between 1.5 and 3 [131, although one

could design examples that result in large t.

14



6. Substructure by Substructure Preconditioning

An obvious generalization of the element by element preconditioner described above is the substruc-

ture by substructure (S x S) preconditioner. Here the finite element mesh is partitioned into a number of

substructures (also referred to as sub-domains or super-elements). Each substructure consists of a group

of elements. Associated with each substructure one can define a stiffness matrix. The assembly of the

substructure stiffness matrices results in the global matrix

A = E NsAsNs (32)
s

where As denotes the stiffness matrix for a substructure. This is a generalization of the element by element

preconditioner in the sense that for the special case when each substructure consists of a single element,

equation (32) reduce to (5).

Following a similar approach to the development of ExE preconditioner we are required to perform

some form of factorization with As. It is important to note that any preconditioner obtained from the fac-

torization As will depend on the ordering of the unknowns associated with the parameters in the given

substructure. By adopting a special ordering where the interior nodes for each substructure are numbered

first one can arrive at the hybrid scheme proposed in [23]. Then, the unknowns associated with each sub-

structure can be partitioned as

B (33)
where xs denotes the unknowns in the interior, and Xs denotes the unknowns on the boundary. Here, all

quantities associated with boundary and interior unknowns are denoted with superscripts B and I, respec-

tively. The terms in equation (32) can be expressed as

As= [AB S~ (34)
=[A I AfD

and
N=[0, 0 ...1, 0 ... 0, NsB]  (35)

The first part of Ns consists of zero blocks except for an identity block corresponding to the interior un-

knowns. The right hand side vector may also be partitioned in a similar manner to obtain

s= {bZ} (36)

With the above ordering the linear system in (2) takes the form

r A' AaN BT x I bl
22 1 22

• • = •(37)
[N • T "'"fB A.. A n T I I  I

T se el T  B B T  AB I B  b
NA1 "2 "11 S S
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where ABB, bV, and xE are related to quantities in equations (33). (34), (35) and (36) through

AB
B  N SBA B BN B T

bs = b Nbs (38)
S

Ba = s T X B

The block arrow structure of the coefficient matrix in (37) is due to the fact that the interior unknowns

in one substructure interact with those in a second substructure only through the boundary unknowns xB.

Eliminating the interior unknowns and using the definitions in (38) one obtains the linear system of equations

for the boundary unknows

[ N N SA B~1] X N s 6 s  (39)
Ls  ssS s

B- n ABB AB B IB T { t I AB is the Schurco pe nt f
where 6E = bE -A A T(AV)-'l An ~ - As8 A (A)-'AE stehrcomplement ofW qsB s b sB 

"5IT&I-hLS J s nds s -"s "s "s

A"s in (34). The main advantage with this approach is that the matrix in (39) has a better condition number
that the original system (see [23] for detail). It is important to note that these quantities can be computed
independently of the other substructures and therefore completely in parallel.

The structure of matrix coefficient in equation (39) is similar to the matrix in (5) in the sense that they
are both constructed using an assembly process. The only difference is that in (39) one is dealing with larger
matrices. This similarity may be used to construct preconditioners for equation (39) in much the same way
as in section 5. However, the difficulty with the product form for the preconditioners defined in section (5) is
the sequential nature of the algorithm. In general, the product form in equations (30) and (31) when applied
to the S x S partition requires the processing of substructure one at a time. This can hinder parallelism when
implemented on a multi-processor computers. Although there are schemes designed to minimize the impact
of the product form on parallel implementation (through graph coloring algorithms), when the number of
substructures are close to the number of available processors these schemes are not effective.

An alternative preconditioner that is suitable for concurrent implementation can be constructed using
the splitting algorithm proposed in [24-26 for transient finite element analysis. This scheme when applied
to the problem in (1) results in an algorithm that has an additive form and thus lends itself to parallel imple-
mentation. Thus, the new preconditioner takes the form

1- ENB|TBB -T NBT1) [E B
T 

BB
-
_
IN BI(1

B- s [z s ] jU (31)

where D is diagonal matrices and U B B is the lower triangle of A B
B . A good choice for fD is the diagonal

of the coefficient matrix in (39) obtain by simply assembling the diagonals of As
The steps in evaluating B- 'v for a given vector v is similar to those for computing the product pf As

and a vector. First, v is localized to each substructure through NB v. This is followed by a step of forward

16



reduction using the lower part of As . Note that the forward reduction is performed for each substructure

independently of the others. The result is then assembled to obtain a new vector which is then multiplied by

D. A second localization of last result followed by a back-substitution and assembly completes the operation

with the preconditioners.
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7. Numerical Examples

In this section we discuss the results obtained from the application of the Lanczos and COG methods
to two different example problems. The first example is a cavity driven flow problem (Stokes flow). The
incompressibility of the fluid is represented by local volumetric constraints. These constraints are enforced
in each finite element using a penalty method. The penalty parameter represents the bulk modulus of the
fluid. 400 elements are used to model this problem. See figure 1(a). The condition number of A increases
with the penalty parameter. We refer to this as material ill-conditioning.

The second example we used is a beam in pure bending. Taking advantage of symmetry, a quarter

of the beam is modeled using plane stress elements, see figure 1(b). The beam was analyzed for a range
of different thicknesses while keeping the length constant. This way the element aspect ratio (ratio of the
largest dimension to the smallest) can be varied. Again, the condition of A increases with the aspect ratio.
We refer to this as geometric ill-conditioning. Three different levels of mesh refinement were used to study

the effect of problem size on the algorithms; 4 x 16, 8 x 32 and 16 x 64.

Lanczos with Partial Reorthogonalization Conjugate Gradients

ExE ExE ExE ExE
LU Split Choleski Diagonal LU Split Choleski Diagonal

Penalty # Reorth. # Reorth. # Reorth. # # #
Param. K Iter. Cost* Iter. Cost* Iter. Cost Iter. Iter. Iter.

104 106 236 19445 228 17245 393 95424 473 424 792
10 105 193 11134 184 8900 348 60869 277 261 517
102 104 117 440 110 768 247 21393 117 110 252

101 103 40 0 39 0 98 708 40 39 98
1 102 26 0 25 0 60 0 26 25 60

• Unit is one dot product and one SAXPY (vector plus a scalar times a vector).

Table 3. Result of tests using 20 x 20 mesh. n = 722.

To illustrate the advantages of semi-orthogonality we evaluate the solution for the 4 x 16 beam problem

using the CG method, Lanczos method with full reorthogonalization, and Lanczos with Simon's scheme for
maintaining semi-orthogonality. In figure 2 we plot the residual norm against the iteration number for each
of the methods. The results for the two implementations of the Lanczos method are indistinguishable. The
residual norm in the CO method starts off the same as that in the Lanczos method, but it deviates quickly

and takes four times as many steps to converge. The difference in the curves for the CG and Lanczos is due
to loss of orthogonality in the CG method.
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We use the 20 x 20 Stokes flow problem to make a direct comparison between three different pre-

conditioners; diagonal scaling, the ExE Choleski defined in (30). and the ExE LU split defined in (31).
We solve this problem for a range of different penalty parameters using both Lanczos and CG methods. A
summary of the results is given in Table 3. Sample plots of the residual norm against the iteration num-

ber are illustrated in Figures 3 and 4. The number of iterations required to obtain the solution using ExE
LU split is marginally more than that using ExE Choleski. On average the cost of reorthogonalization for

E x E Choleski was slightly less. On the other hand, E x E Choleski requires additional storage to keep the
preconditioning matrix. It is interesting to note that the number of reorthogonalizations increases with the

penalty parameter (condition number). This indicates that Simon's scheme performs reorthogonalizations
when ever it is needed. The number of iterations given in Table 3 are plotted against the penalty parameter,

see Figure 5. One can observe from this plot that maintaining orthogonality can results in reductions of

factors of two in the number of iterations for this example.

Lanczos with Partial Reorthogonalization Conjugate Gradients

ExE ExE

LU Split Diagonal LU Split Diagonal

Aspect No. of Reorth. No. of Reorth. No. of No. of

Problem Ratio K lter. Cost* Iter. Cost* Iter. Iter.

1 104 146 511 378 17352 182 506

16 x 64 2 2 x 105 199 1208 542 106880 344 1027

n = 2142 4 3 x 106 329 3261 896 296617 850 2336

8 5 x 107 586 47667 1132+ 811600+ 2714 6000+

40 3 x 1010 886 217883 1648+ 1317042+ 6000+ 6000+

1 2 x 102  41 146 89 2382 41 96

4 x 16 2 3 x 103  56 196 111 5625 71 236

n = 151 4 5 x 104 87 624 141 13951 191 507

8 7 x 105 114 2312 151 17482 605 1532

40 5 x 108 150 6461 151 17784 2216 5614

• Unit is one dot product and one SAXPY (vector plus a scalar times a vector).

Table 4. Result of tests using the beam in pure bending. + indicates that CPU time exceeded.

We obtain a similar set of results for the beam example; see Table 4. Both diagonal and E x E LU split

are used to precondition the problem. The solution is evaluated for three different levels of discretization
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using Lanczos and CG methods. Sample plots for the 8 x 32 mesh are illustrated in Figure 6 for thickness

t = 1.0 and in Figure 7 for t = 0.1. When t = 1.0, CG method required three times as many steps to
converge as the Lanczos method. More crucial is the fact that CG failed to converge after 6000 iterations

when t < 0.5, even for E x E preconditioners. On the other hand Lanczos delivered the solution in less than

300 iterations using Ex E preconditioners.

The 16 x 64 beam problem was also analyzed using CG method with S x S preconditioner using t = 1.0

and t = 0.05 corresponding to element aspect ratios 1 and 80, respectively. The mesh is partitioned into 4,
8. 16, and 32 substructures. All the partition lines were through the thickness of the beam. These partitions

were chosen with equal number of elements in each substructure to illustrate the performance of the S x S

solution algorithm. The computations were carried out on a hypercube concurrent computer having a total of

32 processors. Each substructure was assigned to a different processor. Thus, when the number of partitions

is 8, only 8 of the processors in the hypercube is utilized. The results for these analysis are given in Table 5.

Beam No. of Solution Elimination PCG No. of

Thickness Substructures Time (Sec.) Time (Sec.) Time (Sec.) Iterations

1.0 4 91 82 9 58

8 53 37 16 95

16 40 14 26 148
32 43 3 40 228

0.05 4 110 82 28 164

8 80 37 43 253

16 68 14 54 308

32 76 3 73 410

Table 5. Result of CG with S x S Preconditioner for the beam in pure bending.

The elimination of the interior unknows in each substructure was carried out using a direct method

(profile solver). As the mesh is partitioned into more substructures, the number of unknowns in the interior

decreases. For the partitioning scheme used for this problem, the bandwidth of the substructure stiffness

matrix does not change with the number partitions. As a result, the parallel time for eliminating all the

interior degrees of freedom becomes inversely proportional to the number of substructures. Moreover, the

number of boundary nodes in each substructure remains constant. A direct consequence of this is that the

total number of interface node and thus the number of equations in the reduced system solved by PCG
become directly proportional to the number of substructure. Then the parallel time for each PCG iteration

remains constant. For the S x S preconditioners, the number of PCG iterations depends on the number of

equations and for this choice of partitions, the total parallel PCG time is proportional to the square root of

the number of processors.
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This example clear indicates that there is an optimum number of processors for a given problems that

minimizes the total solution time (direct + PCG). For the beam problem this minimum occurs for 16 pro-

cessors. This optimum processor number is expected to increase with the problem size.
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8. Conclusions

The conjugate gradient method may be derived directly from the Lanczos algoilt, n by performing an
implicit triangular factorization of the resulting reduced tridiagonal matrix. So long as this factorization is
numerically stable the conjugate gradient will also be stable. For symmetric positive definite systems this
factorization is stable. In the case of indefinite equations the success of the conjugate gradient method can
not be guaranteed. However, the Lanczos process will always converge for all symmetric systems.

Partial reorthogonalization improves the robustness of the Lanczos algorithm so that it always con-
verges. However, for ill conditioned system the cost of partial eorthogonalization can be substantial. For
well conditioned problems where there is no tendency towards loss of orthogonality among the Lanczos
vectors, partial reorthogonalization will marginally increase the cost of the Lanczos algorithm. Therefore,

partial reorthogonalization should always be used in conjunction with good preconditioners. It will pick up
the slack for preconditioners.

The S x S preconditioner is introduced as an extension of the E x E preconditioner. It is a hybrid method
combining direct elimination of degrees of freedom interior to substructures with iterative solution for the
unknowns on the boundary nodes of substructures. The S x S preconditioners are always more effective than
the Ex E techniques.
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